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ABSTRACT
A new four-parameter lifetime model called the Weibull Fréchet dis-
tribution is defined and studied. Various of its structural properties
including ordinary and incomplete moments, quantile and generat-
ing functions, probability weightedmoments, Rényi and δ-entropies
and order statistics are investigated. The newdensity function can be
expressed as a linearmixture of Fréchet densities. Themaximum like-
lihood method is used to estimate the model parameters. The new
distribution is applied to two real data sets to prove empirically its
flexibility. It can serve as an alternative model to other lifetime dis-
tributions in the existing literature for modeling positive real data in
many areas.
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1. Introduction

There are hundreds of continuous univariate distributions. In recent years, several appli-
cations from engineering, environmental, financial, biomedical sciences, among other
areas, have indicated that data sets following the classical distributions are more often
the exception rather than the reality. Since there is a clear need for extended distribu-
tions, a significant progress has beenmade towards the generalization of some well-known
distributions and their successful applications to problems in these areas.

The Fréchet (‘Fr’ for short) distribution is one of the important distributions in extreme
value theory and it has applications ranging from accelerated life testing through to earth-
quakes, floods, horse racing, rainfall, queues in supermarkets, wind speeds and sea waves.
For more information about the Fr distribution and its applications, see [9]. Moreover,
applications of this distribution in various fields are given in [8], who showed that it is
an important distribution for modeling the statistical behavior of materials properties for
a variety of engineering applications. Nadarajah and Kotz [16] discussed the sociological
models based on Fr random variables. Zaharim et al. [21] applied the Fr model for ana-
lyzing the wind speed data. Mubarak [13] studied the Fr progressive type-II censored data
with binomial removals.
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Many authors developed generalizations of the Fr distribution. For example, Nadara-
jah and Kotz [15] pioneered the exponentiated Fr, Nadarajah and Gupta [14] and
Barreto-Souza et al. [4] studied the beta Fr, Mahmoud and Mandouh [11] proposed the
transmuted Fr, Krishna et al. [10] introduced the Marshall–Olkin Fr, da Silva et al. [19]
defined the gamma extended Fr, Elbatal et al. [6] studied the transmuted exponentiated
Fr, Mead and Abd-Eltawab [12] introduced the Kumaraswamy Fr and Afify et al. [2]
investigated the transmuted Marshall–Olkin Fr distributions.

The probability density function (pdf) and cumulative distribution function (cdf) of the
Fr distribution are given by (for x>0)

g(x;α,β) = βαβx−β−1exp
[
−
(α

x

)β
]

and G(x;α,β) = exp
[
−
(α

x

)β
]
, (1)

respectively, where α > 0 is a scale parameter and β > 0 is a shape parameter, respectively.
Let a random variable Z have the Fr distribution (1) with parameters α and β . For r <

β , the rth ordinary and incomplete moments of Z are given by μ′
r = αr�(1 − r/β) and

ϕr(t) = αrγ (1 − r/β , (α/t)β), respectively, where�(a) = ∫∞
0 ya−1 e−y dy is the complete

gamma function and γ (a, z) = ∫ z
0 ya−1 e−y dy is the lower incomplete gamma function.

We define and study a new lifetimemodel called theWeibull Fréchet (WFr) distribution.
Its main characteristic is that two shape parameters are added in Equation (1) to provide
more flexibility for the generated distribution. Based on the Weibull-G family pioneered
by Bourguignon et al. [5], we construct the four-parameter WFr model and give a com-
prehensive description of some of its mathematical properties. We aim that it will attract
wider applications in engineering, medicine and other areas of research.

Let g(x; θ) andG(x; θ) denote the density and cumulative functions of a baseline model
with parameter vector θ and consider the Weibull cdf F(x) = 1 − e−axb (for x > 0) with
positive parameters a and b. Based on this cdf, Bourguignon et al. [5] replaced the argument
x by G(x; θ)/Ḡ(x; θ), where Ḡ(x; θ) = 1 − G(x; θ), and defined the cdf of the Weibull-G
family by

F(x; a, b, θ) = ab
∫ [G(x;θ)/Ḡ(x;θ)]

0
tb−1 e−atb dt = 1 − exp

{
−a

[
G(x; θ)

Ḡ(x; θ)

]b}
. (2)

An easy interpretation of the above family can be given as follows. Let Y be a lifetime
random variable having a continuous cdfG(x; θ). The odds ratio that a component follow-
ing the lifetimeY will failure at time x isG(x; θ)/Ḡ(x; θ). Consider that the variability of this
odds of failure is represented by the randomvariableX having theWeibull distributionwith
scale a and shape b. Then, we have P(Y ≤ x) = P[X ≤ G(x; θ)/Ḡ(x; θ)/] = F(x; a, b, θ),
which is just given by Equation (2).

The Weibull-G density function becomes

f (x; a, b, θ) = abg(x; θ)

[
G(x; θ)b−1

Ḡ(x; θ)b+1

]
exp

{
−a

[
G(x; θ)

Ḡ(x; θ)

]b}
. (3)

A random variable X with pdf (3) is denoted by X ∼ Weibull − G(a, b, θ). If b=1, it
corresponds to the exponential generator.
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This paper is unfolded as follows. In Section 2, we define the WFr distribution and
provide some plots for its pdf and hazard rate function (hrf). We derive a useful linear rep-
resentation for its pdf in Section 3.We obtain in Section 4 somemathematical properties of
the new distribution including quantile function (qf), ordinary and incomplete moments,
mean deviations, probability weighted moments (PWMs), moment generating function
(mgf), Rényi and δ-entropies and moments of the residual life and reversed residual life.
In Section 5, we obtain the order statistics and their moments. The maximum likelihood
estimates (MLEs) of the unknown model parameters and a simulation study are provided
in Section 6. In Section 7, we prove empirically the WFr flexibility by means of two real
data sets. Finally, in Section 8, we offer some concluding remarks.

2. TheWFr distribution

By omitting the dependence on the positive parameters α,β , a and b and substituting
Equation (1) in Equation (2), the four-parameter WFr cdf of X is given by (for x>0)

F(x) = 1 − exp

(
−a

{
exp

[(α

x

)β
]

− 1
}−b

)
. (4)

The pdf corresponding to Equation (4) is given by

f (x) = abβαβx−β−1 exp
[
−b

(α

x

)β
]{

1 − exp
[
−
(α

x

)β
]}−b−1

× exp

(
−a

{
exp

[(α

x

)β
]

− 1
}−b

)
, (5)

where α is a scale parameter representing the characteristic life and β , a and b are shape
parameters representing the different patterns of the WFr distribution. Henceforth, we
denote a random variable X having pdf (5) by X ∼ WFr(α,β , a, b). The WFr distribution
is a very flexible model that approaches to different distributions when its parameters are
changed. It contains the following new special models:

• For b=1, the WFr model reduces to the exponential Fr (ExFr) distribution.
• The WFr model reduces to the Weibull inverse exponential (WIE) model when β = 1.
• The case β = 2 refers to the Weibull inverse Rayleigh (WIR) distribution.
• For b=1 and β = 1, it follows the exponential inverse exponential (ExIE) model.
• For b=1 and β = 2, we have the exponential inverse Rayleigh (ExIR) distribution.

The reliability function (rf), hrf and cumulative hazard rate function (chrf) of X are,
respectively, given by

R(x) = exp

{
−a

{
exp

[(α

x

)β
]

− 1
}−b

}
,

h(x) = abβαβx−β−1 exp
[
−b

(α

x

)β
]{

1 − exp
[
−
(α

x

)β
]}−b−1
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(a) (b)

Figure 1. Plots of the WFr pdf for some parameter values [Colour online].

(a) (b)

Figure 2. Plots of the WFr pdf for some parameter values [Colour online].

(a) (b)

Figure 3. Plots of the WFr hrf for some parameter values [Colour online].
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and

H(x) = a
{
exp

[(α

x

)β
]

− 1
}−b

.

Figures 1 and 2 display some plots of the WFr density for selected values of α,β , a and
b. The density plots indicate that the WFr distribution can be skewed to the left and to
the right with small and large values for the skewness and kurtosis measures. The plots of
the WFr hrf for some parameter values given in Figure 3 reveal that this function can be
unimodal, decreasing or increasing, depending on the parameter values.

3. Mixture representation

By substituting Equation (1) in Equation (3), we obtain

f (x) = abβαβx−β−1 exp
[
−b

(α

x

)β
]{

1 − exp
[
−
(α

x

)β
]}−b−1

× exp

⎛
⎜⎝−a

⎡
⎣ exp

[
− (

α
x
)β]

1 − exp
[
− (

α
x
)β]

⎤
⎦
b⎞⎟⎠ . (6)

Let B be the last quantity in Equation (6). By expanding the exponential function in B, we
have

B =
∞∑
k=0

(−1)kak

k!

exp
[
−kb

(
α
x
)β]

{
1 − exp

[
− (

α
x
)β]}kb .

Inserting this expansion in Equation (6) and, after some algebra, we can write

f (x) = bβαβx−β−1
∞∑
k=0

(−1)kak+1

k!
exp

[
−(k + 1)b

(α

x

)β
]

×
{
1 − exp

[
−
(α

x

)β
]}−(kb+b+1)

.

By expanding the binomial terms in power series gives

f (x) = bβαβx−β−1
∞∑

j,k=0

(−1)kak+1[(k + 1)b + 1](j)

j!k!
exp

{
−[(k + 1)b + j]

(α

x

)β
}
,

where a(j) = �(a + j)/�(a) is the rising factorial defined for any real a.
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The last equation can be expressed as

f (x) = β[(k + 1)b + j]αβ
∞∑

j,k=0

υj,kx−β−1 exp
{
−[(k + 1)b + j]

(α

x

)β
}
, (7)

where

υj,k = (−1)kbak+1[(k + 1)b + 1](j)

j!k![(k + 1)b + j]
.

Equation (7) reduces to

f (x) =
∞∑

j,k=0

υj,kh(k+1)b+j(x), (8)

where h(k+1)b+j(x) is the Fr density with scale parameter α[(k + 1)b + j]1/β and shape
parameter β . Thus, the WFr density can be expressed as a double linear mixture of Fr
densities. Then, several of its structural properties can be obtained from Equation (8) and
those properties of the Fr distribution.

By integrating Equation (8), the cdf of X can be given in the mixture form

F(x) =
∞∑

j,k=0

υj,kH(k+1)b+j(x),

where H(k+1)b+j(x) is the Fr cdf with scale parameter α[(k + 1)b + j]1/β and shape
parameter β .

4. Mathematical properties

In this section, we investigate some mathematical properties of the WFr distribution
including quantile and random number generation, ordinary and incomplete moments,
mean deviations, PWMs, mgf, Rényi and δ-entropies and moments of the residual and
reversed residual lifes. Established algebraic expansions to determine some structural
properties of the WFr distribution can be more efficient than computing them directly by
numerical integration of its density function. Analytical facilities available in programming
softwares like Ox, Mathematica, Maple, R and Matlab can substantially contribute
to use these results in practice.

4.1. Quantile and randomnumber generation

For p ∈ (0, 1), the qf of X is obtained by inverting Equation (4) as

xp = α[log{1 + [(−a−1) log(1 − p)]−1/b}]−1/β , 0 < p < 1. (9)

By setting p=0.5 in Equation (9) gives the median M of X. Simulating the WFr random
variable is straightforward. If U is a uniform variate on the unit interval (0, 1), then the
random variable X = xp at p=U follows Equation (5).
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4.2. Moments

The rth ordinary moment of X is given by

μ′
r = E(Xr) =

∞∑
j,k=0

υj,k

∫ ∞

0
xrh(k+1)b+j(x) dx.

For r < β , we obtain

μ′
r =

∞∑
j,k=0

υj,kα
r[(k + 1)b + j]r/β�

(
1 − r

β

)
. (10)

Setting r=1 in Equation (10), we have the mean of X.
The nth central moment of X, say μn, follows as

μn = E(X − μ)n =
n∑

k=0

(−1)k
(
n
k

)
μ′k
1 μ′

n−k.

The cumulants (κn) of X can be obtained from Equation (10) as

κn = μ′
n −

n−1∑
k=0

(
n − 1
k − 1

)
κrμ

′
n−r,

where κ1 = μ′
1. The skewness and kurtosis measures can be evaluated from the ordinary

moments using well-known relationships.

4.3. Incompletemoments

The sth incomplete moment, say ϕs(t), of the WFr distribution is given by ϕs(t) =∫ t
0 x

sf (x) dx. We can write from Equation (8)

ϕs(t) =
∞∑

j,k=0

υj,k

∫ t

0
xsh(k+1)b+j(x),

and then, we obtain (for s < β),

ϕs(t) = αs
∞∑

j,k=0

υj,k[(k + 1)b + j]s/βγ

(
1 − s

β
, [(k + 1)b + j]

(α

t

)β
)
.

The important application of the first incomplete moment is related to the Bonferroni
and Lorenz curves defined by L(p) = ϕ1(xp)/μ′

1 and B(p) = ϕ1(xp)/(pμ′
1), respectively,

where xp can be evaluated numerically by Equation (9) for a given probability p. These
curves are very useful in economics, demography, insurance, engineering and medicine.

Another application of the first incomplete moment refers to the mean residual life
(MRL) and the mean waiting time given by m1(t) = [1 − ϕ1(t)]/R(t) − t and M1(t) =
t − ϕ1(t)/F(t), respectively.
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Further, the amount of scatter in a population is evidently measured to some extent
by the totality of deviations from the mean and median. The mean deviations about the
mean and about the median of X (sayM) can be expressed as δμ = ∫∞

0 |X − μ′
1|f (x) dx =

2μ′
1F(μ′

1) − 2ϕ1μ
′
1 and δM = ∫∞

0 |X − M|f (x) dx = μ′
1 − 2ϕ1(M), respectively, where

μ′
1 = E(X) comes from Equation (10), F(μ′

1) is evaluated from Equation (4) and ϕ1(μ
′
1)

is the first incomplete moment of X at μ′
1.

4.4. Probability weightedmoments

The PWMs can be used to derive estimators of the parameters and quantiles of generalized
distributions. These moments have low variances and no severe biases, and they compare
favorably with estimators obtained by themaximum likelihoodmethod. The (s, r)th PWM
of X (for r ≥ 1, s ≥ 0) is formally defined by

ρr,s = E[XrF(X)s] =
∫ ∞

0
xrF(x)sf (x) dx.

We can write from Equation (4)

F(x)s =
∞∑
i=0

(−1)i
(
s
i

)
exp

⎛
⎜⎝−ia

⎧⎨
⎩

exp
[
− (

α
x
)β]

1 − exp
[
− (

α
x
)β]

⎫⎬
⎭

b⎞⎟⎠ .

Then, from Equations (4) and (5), we obtain

ρr,s = abβαβ
∞∑
i=0

(−1)i
(
s
i

)∫ ∞

0
xr−β−1

exp
[
−b

(
α
x
)β]

{
1 − exp

[
− (

α
x
)β]}b+1

× exp

⎛
⎜⎝−(i + 1)a

⎧⎨
⎩

exp
[
− (

α
x
)β]

1 − exp
[
− (

α
x
)β]

⎫⎬
⎭

b⎞⎟⎠ dx.

We can rewrite the last equation as

ρr,s =
∞∑
i=0

(−1)i

(k + 1 + j)

(
s
i

)∫ ∞

0
xrh(k+1)b+j(x).

By using Equation (10), we obtain (for r < β)

ρr,s =
∞∑

j,i,k=0

dj,i,kαr[(k + 1)b + j]r/β�

(
1 − r

β

)
,

where

dj,i,k = (−1)k+ibak+1(i + 1)k

j!k![(k + 1)b + j]
[(k + 1)b + j + 1](j)[(k + 1)b + 1]r/β−1

(
s
i

)
.
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4.5. Generating function

First, we obtain the mgf of Equation (1) by setting y = x−1

M(t;α,β) = βαβ

∫ ∞

0
exp

(
t
y

)
yβ−1 exp[−(αy)β] dy.

By expanding the first exponential and determining the integral, we have

M(t;α,β) = βαβ

∫ ∞

0

∞∑
m=0

tm

m!
yβ−m−1exp[−(αy)β] dy

=
∞∑

m=0

αmtm

m!
�

(
β − m

β

)
.

Consider the Wright generalized hypergeometric function defined by

p�q

[
(α1,A1), . . . , (αp,Ap)

(β1,B1), . . . , (βq,Bq)
; x
]

=
∞∑
n=0

∏p
j=1 �(αj + Ajn)∏q
j=1 �(βj + Bjn)

xn

n!
.

Hence, we can writeM(t;α,β) as

M(t;α,β) = 1�0

[
(1,−β−1)

− ;αt
]
. (11)

Combining Equations (8) and (11), the mgf of X, sayM(t), reduces to

M(t) =
∞∑

j,k=0

υj,k1�0

[
(1,−β−1)

− ;α[(k + 1)b + j]1/β t
]
.

4.6. Rényi and δ-entropies

The Rényi entropy of a random variable X represents a measure of variation of the
uncertainty. It is defined by

Iδ(X) = 1
1 − δ

log
∫ ∞

−∞
f δ(x) dx, δ > 0 and δ �= 1.

Using Equation (5), we have

f δ(x) = (abβαβ)δx−δ(β+1) exp
[
−bδ

(α

x

)β
]

×
{
1 − exp

[
−
(α

x

)β
]}−δ(b+1)

exp

⎧⎪⎨
⎪⎩−aδ

⎡
⎣ exp

[
− (

α
x
)β]

1 − exp
[
− (

α
x
)β]

⎤
⎦
b⎫⎪⎬
⎪⎭ .

After some algebra, we can write

f δ(x) =
∞∑
k,j

sk,jx−δ(β+1) exp
{
−[(k + δ)b + j]

(α

x

)β
}
,
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where

sk,j = (bβ)δαδβ (−1)kδkaδ+k

k!j!
[(k − δ)b + δ](j).

Then, the Rényi entropy of X reduces to

Iδ(X) = 1
1 − δ

log

⎛
⎝ ∞∑

k,j=0

sk,j
∫ ∞

0
x−δ(β+1) exp

{
−[(k + δ)b + j]

(α

x

)β
}
dx

⎞
⎠ .

Finally, it can be expressed as

Iδ(X) = 1
1 − δ

log

⎡
⎣�

(
δ(β + 1)

β

) ∞∑
k,j=0

ek,j

⎤
⎦ , (12)

where

ek,j = (−1)kbδδkaδ+k

k!j!

(
β

α

)δ−1
[(k − δ)b + δ](j)[b(k + δ) + j]((1−δ(β+1))/β).

The δ-entropy, say Hδ(X), is defined by

Hδ(X) = 1
δ − 1

log
[
1 −

∫ ∞

−∞
f δ(x) dx

]
, δ > 0 and δ �= 1,

and then it follows from Equation (12).

4.7. Moments of the residual and reversed residual lifes

Several functions are defined related to the residual life, for example, the hrf,MRL function
and the left censored mean function. It is well-known that these three functions uniquely
determine F(x), see Zoroa et al. [22].

Definition 1: Let X be a random variable representing the life length for a certain unit at
age t (where this unit can have multiple interpretations). Then, the random variable Xt =
X − t | X > t denotes the remaining lifetime beyond that age.

Further, the nth moment of the residual life of X, namely mn(t) = E[(X − t)n | X > t]
for n = 1, 2, . . ., uniquely determines F(x) (see Navarro et al.) [17]. We have

mn(t) = 1
1 − F(t)

∫ ∞

t
(x − t)n dF(x).

For the WFr distribution, we can write (when r < β)

mn(t) = 1
R(t)

n∑
r=0

(−1)n−rn!αrtn−r

r!(n − r)!

∞∑
j,k=0

υj,k[(k + 1)b + j]r/β

× �

(
1 − r

β
, [(k + 1)b + j]

(α

t

)β
)
,

where �(a, z) = ∫∞
z ya−1 e−y dy is the the upper incomplete gamma function.
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TheMRL function corresponding tomn(t) represents the expected additional life length
for a unit that is alive at age x. Guess and Proschan [7] derived an extensive coverage
of possible applications of the MRL function in survival analysis, biomedical sciences,
life insurance, maintenance and product quality control, economics, social studies and
demography.

In a similar manner, Navarro et al. [17] proved that the nth moment of the reversed
residual life, say Mn(t) = E[(t − X)n | X ≤ t] for t>0 and n = 1, 2, . . ., uniquely deter-
mines F(x). We obtain

Mn(t) = 1
F(t)

∫ t

0
(t − x)n dF(x).

For the WFr distribution, we have (when r < β)

Mn(t) = 1
F(t)

n∑
r=0

(−1)rn!αr

r!(n − r)!

∞∑
j,k=0

υj,k[(k + 1)b + j]r/βγ

(
1 − r

β
, [(k + 1)b + j]

(α

t

)β
)
.

The mean reversed residual life (MRRL) function corresponding to M1(t) represents the
waiting time elapsed for the failure of an item under the condition that this failure had
occurred in (0, t). The MRRL function of X can be obtained by setting n=1 in the above
equation .

5. Order statistics

Let X1, . . . ,Xn be a random sample of size n from the WFr distribution and X(1), . . . ,X(n)
be the corresponding order statistics. Then, the pdf of the ith-order statisticXi:n, say fi:n(x),
is given by

fi:n(x) = f (x)
B(i, n − i + 1)

n−i∑
j=0

(−1)j
(
n − 1
j

)
F(x)i+j−1. (13)

We can write

F(x)i+j−1 =
∞∑
r=0

(−1)r
(
i + j − 1

r

)
exp

⎛
⎜⎝−ra

⎧⎨
⎩

exp
[
− (

α
x
)β]

1 − exp
[
− (

α
x
)β]

⎫⎬
⎭

b⎞⎟⎠ , (14)

and then by substituting Equations (6) and (14) in Equation (13), we obtain

fi:n(x) =
∞∑

k,p=0

υk,phα(bk+b+p)(x), (15)

where

υk,p =
∞∑
r=0

n−i∑
j=0

(−1)j+r+1bak+1(r + 1)k[(k + 1)b + p + 1](p)

k!p!B(i, n − i + 1)[(k + 1)b + p]

(
n − i
j

)(
i + j − 1

r

)

and hα(bk+b+p) denotes the Fr density function with parameters α[(k + 1)b + p]1/β and
β . Thus, the density function of the WFr order statistics is a linear mixture of Fr densities.
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Based on Equation (15), we can obtain some structural properties of Xi:n from those Fr
properties.

For example, the qth moment of Xi:n (for q < β) is given by

E(Xq
i:n) =

∞∑
k,p=0

υk,pE[Y
q
α(bk+b+p)], (16)

where Yα(bk+b+p) ∼ Fr(α[(k + 1)b + p]1/β ,β).
The L-moments are analogous to the ordinary moments but can be estimated by linear

combinations of order statistics. They exist whenever the mean of the distribution exists,
even though some higher moments may not exist, and are relatively robust to the effects of
outliers. They are linear functions of expected order statistics defined by

λr = 1
r

r−1∑
d=0

(−1)d
(
r − 1
d

)
E(Xr−d:r), r ≥ 1.

Based upon the moments in Equation (16), we can obtain explicit expressions for the L-
moments of X as infinite weighted linear combinations of suitable WFr means.

6. Estimation

Several approaches for parameter estimation were proposed in the literature but the max-
imum likelihood method is the most commonly employed. The MLEs enjoy desirable
properties and can be used when constructing confidence intervals and regions and also in
test statistics. The normal approximation for these estimators in large sample distribution
theory is easily handled either analytically or numerically. So, we consider the estima-
tion of the unknown parameters for this family from complete samples only by maximum
likelihood. We investigate the MLEs of the parameters of the WFr(α,β , a, b) model. Let
x = (x1, . . . , xn) be a random sample from this model with unknown parameter vector
θ = (α,β , a, b)ᵀ.

The log-likelihood function for θ , say � = �(θ), is given by

� = n(log a + log b + logβ + logαβ) − (β + 1)
n∑

i=1
log xi − b

n∑
i=1

(
α

xi

)β

− (b + 1)
n∑
i=1

(1 − si) − a
n∑
i=1

(
si

1 − si

)b
, (17)

where si = exp[−(α/xi)β].
Equation (17) can be maximized either directly by using the R (optim function), SAS

(PROC NLMIXED sub-routine), Ox program (MaxBFGS) or by solving the nonlinear
likelihood equations obtained by differentiating Equation (17).

The score vector is given by U(θ) = ∂�/∂θ = (∂�/∂α, ∂�/∂β , ∂�/∂a, ∂�/∂b)ᵀ.
Let zi = (α/xi)β log(α/xi). Then,

∂�

∂α
= nβ

α
− bβ

α1−β

n∑
i=1

x−β
i − (b + 1)β

α1−β

n∑
i=1

six
−β
i

1 − si
+ abβ

α1−β

n∑
i=1

six
−β
i

(si − 1)1−b ,
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∂�

∂β
= n

β
+ n logα −

n∑
i=1

log xi − b
n∑

i=1
zi − (b + 1)

n∑
i=1

sizi
1 − si

+
n∑

i=1

absizi
(si − 1)1−b ,

∂�

∂a
= n

a
−

n∑
i=1

(si − 1)b

and

∂�

∂b
= n

b
+

n∑
i=1

log si −
n∑

i=1
log(1 − si) − a

n∑
i=1

(si − 1)b log(si − 1).

We can obtain the estimates of the unknown parameters by setting the score vector to
zero, U(θ̂ ) = 0. By solving these equations simultaneously gives the MLEs α̂, β̂ , â and
b̂. These estimates can be obtained numerically using iterative techniques such as the
Newton–Raphson algorithm. For the WFr distribution, all the second-order derivatives
exist.

For interval estimation of the model parameters, we require the 4 × 4 observed infor-
mation matrix J(θ) = {Jrs} for r, s = α,β , a, b. Under standard regularity conditions, the
multivariate normalN4(0, J(θ̂ )−1) distribution can be used to construct approximate con-
fidence intervals for the model parameters. Here, J(θ̂) is the total observed information
matrix evaluated at θ̂ . Then, approximate 100(1 − φ)% confidence intervals for the model
parameters can be determined in the usual way of the first-order asymptotic theory.

6.1. Simulations study

Various simulations are considered for different sample sizes to examine the performance
of the MLEs for the WFr parameters. The simulations are performed as follow:

• The data are generated from x = α{log[(−a)1/b[log(1 − u)]−1/b + 1]}−1/β , where u ∼
U(0, 1).

• The parameter values are set at α = 2.0, β = 3.0, a=1.5 and b=0.5.
• The sample sizes are taken as n=50, 150 and 300.
• Each sample size is replicated 1000 times.

We evaluate the average estimates (AEs), biases and means squared errors (MSEs). The
results of the Monte Carlo study are given in Table 1. The figures in this table indicate that
the MSEs of the MLEs of the parameters decay toward zero as the sample size increases,
as usually expected under first-order asymptotic theory. As the sample size n increases,
the mean estimates of the parameters tend to be closer to the true parameter values. This
fact indicates that the asymptotic normal distribution provides an adequate approximation
to the finite sample distribution of the estimates. The usual normal approximation can
be oftentimes improved by making bias adjustments to the estimates. Approximations to
the biases of the MLEs in simple models may be determined analytically. First-order bias
correction typically does a very good job in reducing the bias. However, it may increase
the MSE. Whether bias correction is useful in practice depends basically on the shape of
the bias function and on the variance of the MLE. In order to improve the accuracy of
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Table 1. Simulation results: mean estimates, biases and MSEs of α̂, β̂ , â and b̂.

n Parameter AE Bias MSE

50 α 1.9910 −0.009 0.0230
β 3.0846 0.0846 0.2283
a 1.5188 0.0188 0.0735
b 0.5208 0.0208 0.0181

150 α 2.0103 0.0103 0.0090
β 3.0006 0.0001 0.0637
a 1.5329 0.0329 0.0338
b 0.5067 0.0067 0.0053

300 α 2.0112 0.0112 0.0040
β 3.0068 0.0068 0.0274
a 1.5250 0.0250 0.0141
b 0.4986 −0.0014 0.0024

these estimates using analytical bias reduction, one needs to obtain several cumulants of
log likelihood derivatives, which are notoriously cumbersome for the proposed model.

7. Data analysis

In this section, we prove empirically the flexibility of the new distribution by means of
two real data sets. We compare the fits of the WFr, Kumaraswamy Fr (KFr) [12], expo-
nentiated Fr (EFr) [15], beta Fr (BFr) [14], gamma extended Fr (GEFr) [19], transmuted
Marshall–Olkin Fr (TMOFr) [2], transmuted Fr (TFr) [11], Marshall–Olkin Fr (MOFr)
[10] and Fr distributions. Their density functions (for x>0) are given by:

KFr : f (x;α,β , a, b) = abβαβx−β−1exp
[
−a

(α

x

)β
]{

1 − exp
[
−a

(α

x

)β
]}b−1

;

EFr : f (x;α,β , a) = aβαβx−β−1exp
[
−
(α

x

)β
]{

1 − exp
[
−
(α

x

)β
]}a−1

;

BFr : f (x;α,β , a, b) = βαβ

B(a, b)
x−β−1exp

[
−a

(α

x

)β
]{

1 − exp
[
−
(α

x

)β
]}b−1

;

GEFr : f (x;α,β , a, b) = aβαβ

�(b)
x−β−1exp

[
−
(α

x

)β
]{

1 − exp
[
−
(α

x

)β
]}a−1

×
(

− log
{
1 − exp

[
−
(α

x

)β
]}a)b−1

;

TMOFr : f (x;α,β , a, b) = aβαβx−β−1
{
a + (1 − a)exp

[
−
(α

x

)β
]}−2

× exp
[
−
(α

x

)β
](

1 + b − 2bexp
[
−
(α

x

)β
]

×
{
a + (1 − a)exp

[
−
(α

x

)β
]}−1

)
;
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TFr : f (x;α,β , b) = βαβx−β−1exp
[
−
(α

x

)β
]{

1 + b − 2b exp
[
−
(α

x

)β
]}

;

MOFr : f (x;α,β , a) = aβαβx−β−1exp
[
−
(α

x

)β
]{

a + (1 − a) exp
[
−
(α

x

)β
]}−2

.

The parameters of the above densities are all positive real numbers except for theTMOFr
and TFr distributions for which |b| ≤ 1.

The first data set consists of 100 observations of breaking stress of carbon fibres (in Gba)
given by Nichols and Padgett [18]. These data have been used by Afify et al. [3] to fit the
transmuted complementary Weibull geometric distribution.

The second data set [20] consists of 63 observations of the strengths of 1.5 cm glass
fibres, originally obtained by workers at the UK National Physical Laboratory. Unfortu-
nately, the measurement units are not given in their paper. These data have also been used
by Barreto-Souza et al. [4] and Afify and Aryal [1] for fitting the BFr and Kumaraswamy
exponentiated Fr (KEFr) distributions, respectively.

Table 2. Some statistics for models fitted to breaking stress of carbon fibres.

Goodness of fit criteria

Model −2�̂ AIC BIC HQIC CAIC

WFr 286.6 294.6 305.0 298.8 295.0
EFr 289.7 295.7 303.5 298.9 296.0
KFr 289.1 297.1 307.5 301.3 297.5
BFr 303.1 311.1 321.6 315.4 311.6
GEFr 304 312 332.4 316.2 312.4
TMOFr 302.0 310.0 320.4 314.2 310.4
Fr 344.3 348.3 353.5 350.4 348.4
TFr 344.5 350.5 358.3 353.6 350.7
MOFr 345.3 351.3 359.1 354.5 351.6

Table 3. MLEs and their standard errors (in parentheses) for breaking stress of carbon fibres.

Estimates

Model α̂ β̂ â b̂

WFr 0.6942 0.6178 0.0947 3.5178
(0.363) (0.284) (0.456) (2.942)

EFr 69.1489 0.5019 145.3275
(57.349) (0.08) (122.924)

KFr 2.0556 0.4654 6.2815 224.18
(0.071) (0.00701) (0.063) (0.164)

BFr 1.6097 0.4046 22.0143 29.7617
(2.498) (0.108) (21.432) (17.479)

GEFr 1.3692 0.4776 27.6452 17.4581
(2.017) (0.133) (14.136) (14.818)

TMOFr 0.6496 3.3313 101.923 0.2936
(0.068) (0.206) (47.625) (0.27)

Fr 1.8705 1.7766
(0.112) (0.113)

TFr 1.9315 1.7435 0.0819
(0.097) (0.076) (0.198)

MOFr 2.3066 1.5796 0.5988
(0.498) (0.16) (0.3091)
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In order to compare the distributions, we consider the following criteria: the −2�̂
(minus twice the maximized log-likelihood), AIC (Akaike information criterion), CAIC
(consistent Akaike information criterion), BIC (Bayesian information criterion) and
HQIC (Hannan-Quinn information criterion). These statistics are given by AIC = −2�̂ +
2k, BIC = −2�̂ + k log(n), HQIC = −2�̂ + 2k log[log(n)] and CAIC = −2�̂ + 2kn/(n −
k − 1), where �̂ denotes the log-likelihood function evaluated at the MLEs, k is the num-
ber of model parameters and n is the sample size. The model with lowest values for these
statistics could be chosen as the best model to fit the data.

Tables 2 and 4 provide the values of the above statistics for the fitted models to both
data sets, whereas the MLEs and their corresponding standard errors (in parentheses) of
the model parameters are listed in Tables 3 and 5, respectively. These results are obtained
using the MATHCAD PROGRAM.

Tables 2 and 4 compare theWFrmodel with theKFr, EFr, BFr, GEFr, TMOFr, TFr,MOFr
and Fr distributions. The WFr model gives the lowest values for the AIC, BIC, HQIC and
CAIC statistics (in bold values) among all fittedmodels to these data. So, it could be chosen
as the bestmodel among them. Figure 4 displays the plots of estimated densities of theWFr,
KFr, EFr, BFr, GEFr, TMOFr, TFr,MOFr and Frmodels, whereas the plots of estimated cdfs

Table 4. Some statistics for models fitted to strengths of 1.5 cm glass fibres.

Goodness of fit criteria

Model −2�̂ AIC BIC HQIC CAIC

WFr 31.0 39.0 47.6 42.4 39.7
KFr 39.6 47.6 56.2 51 48.3
EFr 44.3 50.5 56.7 52.8 50.7
TMOFr 48.5 56.5 65.0 59.8 57.1
MOFr 51.1 57.1 63.5 59.6 57.5
BFr 60.6 68.6 77.2 72.0 69.3
GEFr 61.6 69.6 78.1 72.9 70.3
Fr 93.7 97.7 102 99.4 97.9
TFr 94.1 100.1 106.5 102.6 100.5

Table 5. MLEs and their standard errors (in parentheses) for strengths of 1.5 cm glass fibres.

Estimates

Model α̂ β̂ â b̂

WFr 0.3865 0.2436 1.4762 16.8561
(0.799) (0.285) (4.782) (20.485)

KFr 2.116 0.740 5.504 857.343
(4.555) (0.071) (7.982) (153.948)

EFr 7.816 0.999 132.827
(2.945) (0.136) (116.63)

TMOFr 0.65 6.8744 376.268 0.1499
(0.049) (0.596) (246.832) (0.302)

MOFr 0.6812 6.4655 161.6114
(0.045) (0.559) (91.499)

BFr 2.0518 0.6466 15.0756 36.9397
(0.986) (0.163) (12.057) (22.649)

GEFr 1.6625 0.7421 32.112 13.2688
(0.952) (0.197) (17.397) (9.967)

Fr 1.264 2.888
(0.059) (0.234)

TFr 1.3068 2.7898 0.1298
(0.034) (0.165) (0.208)



2624 A. Z. AFIFY ET AL.

Figure 4. The fittedWFr density and other densities for the first data set (left panel) and second data set
(right panel) [Colour online].

Figure 5. The fitted cdfs of the WFr model for the first data set (left panel) and second data set (right
panel) [Colour online].

of the WFr model are displayed in Figure 5. These plots reveal that the WFr distribution
yields a better fit than other nested and non-nested models for both data sets.

8. Conclusions

In this paper, we propose a new four-parameter model named the Weibull Fréchet (WFr)
distribution, which extends the Fréchet (Fr) distribution. An obvious reason for gener-
alizing a classical distribution is the fact that the generalization provides more flexibility
to analyze real life data. We study some of its mathematical and statistical properties. The
WFr density function can be expressed as a linearmixture of Fr densities.We derive explicit
expressions for the ordinary and incomplete moments, mean deviations, quantile and gen-
erating function, PWMs, Rényi and δ-entropies and moments of the residual and reversed
residual lifes.We also obtain the density function of the order statistics and their moments.
We estimate themodel parameters bymaximum likelihood.We present a simulation study
to illustrate the performance of the estimates. The new distribution applied to two real
data sets provides better fits than some other related non-nested models. We hope that the
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proposed model will attract wider applications in areas such as engineering, survival and
lifetime data, meteorology, hydrology, economics (income inequality) and others.
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